

Background

Computational Methods for Fluid Flow

Need to efficiently compute steady flow states to enable

- Implicit time stepping strategies
- Improved stability analysis
- Classification of flow bifurcations

Fluid Models

Incompressible Navier Stokes

$$rac{\partial \vec{u}}{\partial t} -
u
abla^2 \vec{u} + (\vec{u} \cdot
abla) \vec{u} +
abla p = f ext{ in } \Omega,$$
 $abla \cdot \vec{u} = 0 ext{ in } \Omega.$

Advection-Diffusion

$$-\nabla^2 u + (\vec{w} \cdot \nabla)u = g$$

Viscous and Inertial forces occur on disparate scales lead to sharp flow features which:

- ► require fine numerical grid resolution
- cause poorly conditioned non-symmetric system.

Spatial Discretization

Spectral Element Method

On each element, the solution is expressed via a nodal basis

$$u_e^N(x,y) = \sum_{i=1}^{N+1} \sum_{j=1}^{N+1} u_{ij} \pi_i(x) \pi_j(y).$$
 (1)

Figure: Simulation domain Ω (left) is divided into elements (middle). In each element grid points based on Gauss-Legendre-Lobatto nodes are chosen (right).

Spectral Basis Functions

Figure: 4th Order 2D Lagrangian nodal basis functions $\pi_i \otimes \pi_j$ based on the Gauss-Labotto-Legendre points.

Fluid Simulation Layout

Time step (BE) $x^{n+1} = x^n + \Delta t F(t^{n+1}, x^{n+1})$

Nonlinear Solver (Newton) $x_{k+1} = x_k + \Delta x_k$

Linear Solver (GMRES) $A\Delta x_k = b$

Preconditioner (DD) $AP^{-1}P\Delta x_k = b$

Domain Decomposition System

$$\begin{bmatrix} \bar{P}_{II}^{1} & 0 & \dots & 0 & \bar{P}_{I\Gamma}^{1} \\ 0 & \bar{P}_{II}^{2} & 0 & \dots & \bar{P}_{I\Gamma}^{2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \bar{P}_{II}^{E} & \bar{P}_{I\Gamma}^{E} \\ 0 & 0 & \dots & 0 & \bar{P}_{S} \end{bmatrix} \begin{pmatrix} u_{I1} \\ u_{I2} \\ \vdots \\ u_{IE} \\ u_{\Gamma} \end{pmatrix} = \begin{pmatrix} \hat{b}_{I1} \\ \hat{b}_{I2} \\ \vdots \\ \hat{b}_{IE} \\ g_{\Gamma} \end{pmatrix}$$

 $\bar{P}_S = \sum_{e=1}^{E} (\bar{P}_{\Gamma\Gamma}^e - \bar{P}_{\Gamma}^e \bar{P}_{II}^{e-1} \bar{P}_{I\Gamma}^e)$ represents the Schur complement of the system. The interface u_{Γ} is obtained via an iterative solve.

Constant Wind Approximation

When the "wind" \vec{w} is constant on each element, then element interiors can be obtained via Fast Diagonalization and $P^{-1} = A^{-1}$.

Otherwise using a constant wind approximation on each element $P^{-1} \approx A^{-1}$.

Figure: Illustration of a constant wind approximation

$$\bar{P}^{e^{-1}} = \tilde{M}(V_y \otimes V_X)(\Lambda_y \otimes I + I \otimes \Lambda_X)^{-1}(V_y^{-1} \otimes V_X^{-1})\tilde{M}$$

Test Case: Constant Wind, Pc=400

Figure: Steady flow with constant wind exhibiting boundary layer at y = 1 using SEM N=16 & E=4x4.

Interface Solver Convergence

Table: Iteration count (E=4 × 4)

Iterations Iterations

N - R-R

240

108

103

Table: Iteration count (N=4)				
	Iterations	Iterations		
E	_	R-R		
4 × 4	240	44		
8 × 8	175	42		
16 × 16	143	50		

Robin-Robin preconditioned interface solve (R-R) is invariant to the number of points in the discretization and convergences in significantly fewer steps than the non-preconditioned system (-).

Test Case: Recirculating Wind, Pc=400

$$\vec{w} = 200(y(1-x^2), -x(1-y^2))$$

Figure: Computed solution of steady flow with recirculating wind using SEM N=4 & E=12x12.

Figure: Comparison of Outer iterations when inner iterations are varied.

Convergence Properties for Refined Meshes

Table: Iteration Count ($E=4 \times 4$)

neralion Count (E=				
	Number of			
N	Outer Iterations			
5	52			
7	56			
9	55			
11	53			
13	51			

Table: Iteration count (N=4)

Number of

E. Outer Iterations

	Number of	
E	Outer Iterations	
10 × 10	37	
11 × 11	38	
12 × 12	38	
13 × 13	38	

Summary & Future Directions

Summary

Improved simulation efficiency for steady
 Advection-Diffusion equation

Future Directions

- Improve wind approximation on each element
- ► Coarse Grid Preconditioner to allow for more elements
- Use Preconditioner in Navier-Stokes simulations
- Apply to realistic fluid simulations

References

- ► P. A. Lott, "Fast Solvers for Models of Fluid Flow", Ph.D. Thesis University of Maryland College Park, 2008
- ► P. A. Lott and H. Elman, "Matrix-free preconditioner for the steady advection-diffusion equation with spectral element discretization", in preparation, 2008
- Matrix-free Block preconditioner for the Navier-Stokes equations", in preparation, 2008